Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

app2(app2(mapt, f), app2(leaf, x)) -> app2(leaf, app2(f, x))
app2(app2(mapt, f), app2(node, xs)) -> app2(node, app2(app2(maptlist, f), xs))
app2(app2(maptlist, f), nil) -> nil
app2(app2(maptlist, f), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(app2(mapt, f), x)), app2(app2(maptlist, f), xs))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app2(app2(mapt, f), app2(leaf, x)) -> app2(leaf, app2(f, x))
app2(app2(mapt, f), app2(node, xs)) -> app2(node, app2(app2(maptlist, f), xs))
app2(app2(maptlist, f), nil) -> nil
app2(app2(maptlist, f), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(app2(mapt, f), x)), app2(app2(maptlist, f), xs))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

APP2(app2(maptlist, f), app2(app2(cons, x), xs)) -> APP2(app2(maptlist, f), xs)
APP2(app2(mapt, f), app2(leaf, x)) -> APP2(f, x)
APP2(app2(maptlist, f), app2(app2(cons, x), xs)) -> APP2(cons, app2(app2(mapt, f), x))
APP2(app2(mapt, f), app2(node, xs)) -> APP2(node, app2(app2(maptlist, f), xs))
APP2(app2(mapt, f), app2(node, xs)) -> APP2(maptlist, f)
APP2(app2(mapt, f), app2(node, xs)) -> APP2(app2(maptlist, f), xs)
APP2(app2(maptlist, f), app2(app2(cons, x), xs)) -> APP2(app2(cons, app2(app2(mapt, f), x)), app2(app2(maptlist, f), xs))
APP2(app2(maptlist, f), app2(app2(cons, x), xs)) -> APP2(mapt, f)
APP2(app2(mapt, f), app2(leaf, x)) -> APP2(leaf, app2(f, x))
APP2(app2(maptlist, f), app2(app2(cons, x), xs)) -> APP2(app2(mapt, f), x)

The TRS R consists of the following rules:

app2(app2(mapt, f), app2(leaf, x)) -> app2(leaf, app2(f, x))
app2(app2(mapt, f), app2(node, xs)) -> app2(node, app2(app2(maptlist, f), xs))
app2(app2(maptlist, f), nil) -> nil
app2(app2(maptlist, f), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(app2(mapt, f), x)), app2(app2(maptlist, f), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP2(app2(maptlist, f), app2(app2(cons, x), xs)) -> APP2(app2(maptlist, f), xs)
APP2(app2(mapt, f), app2(leaf, x)) -> APP2(f, x)
APP2(app2(maptlist, f), app2(app2(cons, x), xs)) -> APP2(cons, app2(app2(mapt, f), x))
APP2(app2(mapt, f), app2(node, xs)) -> APP2(node, app2(app2(maptlist, f), xs))
APP2(app2(mapt, f), app2(node, xs)) -> APP2(maptlist, f)
APP2(app2(mapt, f), app2(node, xs)) -> APP2(app2(maptlist, f), xs)
APP2(app2(maptlist, f), app2(app2(cons, x), xs)) -> APP2(app2(cons, app2(app2(mapt, f), x)), app2(app2(maptlist, f), xs))
APP2(app2(maptlist, f), app2(app2(cons, x), xs)) -> APP2(mapt, f)
APP2(app2(mapt, f), app2(leaf, x)) -> APP2(leaf, app2(f, x))
APP2(app2(maptlist, f), app2(app2(cons, x), xs)) -> APP2(app2(mapt, f), x)

The TRS R consists of the following rules:

app2(app2(mapt, f), app2(leaf, x)) -> app2(leaf, app2(f, x))
app2(app2(mapt, f), app2(node, xs)) -> app2(node, app2(app2(maptlist, f), xs))
app2(app2(maptlist, f), nil) -> nil
app2(app2(maptlist, f), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(app2(mapt, f), x)), app2(app2(maptlist, f), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 6 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APP2(app2(maptlist, f), app2(app2(cons, x), xs)) -> APP2(app2(maptlist, f), xs)
APP2(app2(mapt, f), app2(leaf, x)) -> APP2(f, x)
APP2(app2(mapt, f), app2(node, xs)) -> APP2(app2(maptlist, f), xs)
APP2(app2(maptlist, f), app2(app2(cons, x), xs)) -> APP2(app2(mapt, f), x)

The TRS R consists of the following rules:

app2(app2(mapt, f), app2(leaf, x)) -> app2(leaf, app2(f, x))
app2(app2(mapt, f), app2(node, xs)) -> app2(node, app2(app2(maptlist, f), xs))
app2(app2(maptlist, f), nil) -> nil
app2(app2(maptlist, f), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(app2(mapt, f), x)), app2(app2(maptlist, f), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


APP2(app2(maptlist, f), app2(app2(cons, x), xs)) -> APP2(app2(maptlist, f), xs)
APP2(app2(maptlist, f), app2(app2(cons, x), xs)) -> APP2(app2(mapt, f), x)
The remaining pairs can at least be oriented weakly.

APP2(app2(mapt, f), app2(leaf, x)) -> APP2(f, x)
APP2(app2(mapt, f), app2(node, xs)) -> APP2(app2(maptlist, f), xs)
Used ordering: Polynomial Order [17,21] with Interpretation:

POL( APP2(x1, x2) ) = max{0, x2 - 3}


POL( app2(x1, x2) ) = x1 + x2 + 1


POL( cons ) = 2


POL( leaf ) = 2


POL( node ) = 2



The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP2(app2(mapt, f), app2(leaf, x)) -> APP2(f, x)
APP2(app2(mapt, f), app2(node, xs)) -> APP2(app2(maptlist, f), xs)

The TRS R consists of the following rules:

app2(app2(mapt, f), app2(leaf, x)) -> app2(leaf, app2(f, x))
app2(app2(mapt, f), app2(node, xs)) -> app2(node, app2(app2(maptlist, f), xs))
app2(app2(maptlist, f), nil) -> nil
app2(app2(maptlist, f), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(app2(mapt, f), x)), app2(app2(maptlist, f), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
QDP
                  ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APP2(app2(mapt, f), app2(leaf, x)) -> APP2(f, x)

The TRS R consists of the following rules:

app2(app2(mapt, f), app2(leaf, x)) -> app2(leaf, app2(f, x))
app2(app2(mapt, f), app2(node, xs)) -> app2(node, app2(app2(maptlist, f), xs))
app2(app2(maptlist, f), nil) -> nil
app2(app2(maptlist, f), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(app2(mapt, f), x)), app2(app2(maptlist, f), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


APP2(app2(mapt, f), app2(leaf, x)) -> APP2(f, x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial Order [17,21] with Interpretation:

POL( APP2(x1, x2) ) = max{0, x2 - 3}


POL( app2(x1, x2) ) = x1 + x2 + 1


POL( leaf ) = 3



The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ QDPOrderProof
QDP
                      ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app2(app2(mapt, f), app2(leaf, x)) -> app2(leaf, app2(f, x))
app2(app2(mapt, f), app2(node, xs)) -> app2(node, app2(app2(maptlist, f), xs))
app2(app2(maptlist, f), nil) -> nil
app2(app2(maptlist, f), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(app2(mapt, f), x)), app2(app2(maptlist, f), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.